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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as
α particles) are calculated directly by solving the Schrödinger equation for five nucleons interacting
through accurate two- and three-nucleon forces derived within the framework of chiral effective field
theory. Precise knowledge of these processes at various proton backscattering/recoil angles and
energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids,
to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different
kinematic configurations, can be used to probe concentrations and depth profiles of either hydrogen
or helium. We compare our results to available experimental data and show that direct calculations
with modern nuclear potentials can help to resolve remaining inconsistencies among different data
sets and can be used to predict these cross sections when measurements are not available.

PACS numbers: 21.60.De, 24.10-Cn, 25.40.Cm, 25.40.Ny, 25.55.Ci, 27.10.+h

Introduction. The 4He(p, p)4He proton elastic scat-
tering and 1H(α, p)4He proton elastic recoil reactions are
the leading means for determining the concentrations
and depth profiles of, respectively, helium and hydro-
gen at the surface of materials or in thin films. Such
analyses, known among specialists as (non-)Rutherford
backscattering spectroscopy and elastic recoil detection
analysis, are very important for characterizing the phys-
ical, chemical and electrical behavior of materials, for
which hydrogen is one of the most common impurities,
and for studying the implantation of helium for applica-
tions in, e.g., waveguides or fusion energy research [1, 2].
To achieve good resolution e.g. in the case of thick sam-
ples, measurements are often performed at energies above
the Rutherford threshold where the purely Coulomb elas-
tic scattering paradigm does not hold anymore. In this
regime, in which the incident particle energy is on the
order of a few MeV per nucleon, nuclear physics be-
comes the main driver of the scattering process, partic-
ularly near low-lying resonances where the cross section
can be enhanced by orders of magnitude with respect to
the Rutherford rate. Therefore, the availability of ac-
curate reference differential cross sections for a variety
of proton/4He incident energies and detection angles are
key to the feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on
4He has been studied extensively in the past [3–8],
but only a somewhat limited number of measurements
were performed in the energy range of interest for ion-
beam analysis, and inconsistencies among different data
sets remain [9–15]. Consequently, cross sections deduced
from R-matrix analyses of data usually stand as refer-
ences [8, 15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2- and 1/2- low-
lying resonances of 5Li. An alternative way of fitting
p-4He data, based on controlled and systematic effec-

tive field theory expansions, was introduced in Ref. [18].
Other theoretical investigations of p-4He scattering in-
clude microscopic calculations with phenomenological in-
teractions [19–21] as well as ab initio calculations based
on accurate nucleon-nucleon (NN) [22, 23] and three-
nucleon (3N) [24] forces. However, both set of calcula-
tions have limited predictive power. The former make use
of effective interactions with parameters adjusted to re-
produce the experimental nucleon-4He phase shifts [21],
and a simplified description of the 4He nucleus. In the
latter, an accurate convergence was only achieved for en-
ergies above the 5Li resonance. In this Letter we re-
port on the most complete ab initio calculation of p-4He
scattering and provide accurate predictions for proton
backscattering and recoil cross sections at various ener-
gies and angles of interest for ion-beam applications.
Formalism. We solve the Schrödinger equation for

A = 5 interacting nucleons by means of the no-core shell
model with continuum (NCSMC) [25, 26]. For each chan-
nel of total angular momentum, parity and isospin (JπT )
we expand the five-nucleon wave function on an overcom-
plete basis that consists of: i) square-integrable energy
eigenstates of the 5Li compound system, |5LiλJπT 〉; and
ii) continuous states built from a proton and a 4He (or,
α) nucleus (in a Jπα

α Tα eigenstate) whose centers of mass
are separated by the relative coordinate ~rα,p, and that
are moving in a 2s+1`J partial wave of relative motion,

|ΦJ
πT
νr 〉 =

[(
|4HeλαJ

πα
α Tα〉|p 1

2

+ 1
2 〉
)(sT )

Y`(r̂α,p)
](JπT )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is:

|ΨJπT
A=5 〉 =

∑
λ

cλ|5LiλJπT 〉+
∑
ν

∫
dr r2

γν(r)

r
Aν |ΦJ

πT
νr 〉 .

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels λα and λ, are antisym-
metric under exchange of internal nucleons. They are
obtained ahead of time by means of the ab initio no-
core shell model [27, 28] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to Nmax HO quanta and fre-
quency ~Ω. The index ν collects the quantum num-
bers {4He λαJ

πα
α Tα; p 1

2

+ 1
2 ; s`} associated with the con-

tinuous basis states of Eq. (1), and the operator Aν =
1√
5
(1 −

∑4
i=1 Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coefficients, cλ, and the continuous
amplitudes of relative motion, γν(r) = (N−1/2χ)ν(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations(

H5Li h̄
h̄ H

)(
c
χ

)
= E

(
I5Li ḡ
ḡ I

)(
c
χ

)
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5Li)λλ′ = δλλ′Eλ [(I5Li)λλ′ = δλλ′ ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, Hνν′(r, r′) = (N−1/2HN−1/2)νν′(r, r′)
[Iνν′(r, r′) = δνν′δ(r − r′)/(rr′)], which are obtained
from Nνν′(r, r′) = 〈ΦJπT

νr |AνAν′ |ΦJπT
ν′r′ 〉 and Hνν′(r, r′) =

〈ΦJπT
νr |AνHAν′ |ΦJπT

ν′r′ 〉, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡλν(r)=(gN−1/2)λν(r),
and Hamiltonian, h̄λν(r) = (hN−1/2)λν(r), form fac-
tors, with gλν(r) = 〈5LiλJπT |Aν |ΦJ

πT
νr 〉 and hλν(r) =

〈5LiλJπT |HAν |ΦJ
πT
νr 〉. The scattering matrix (and from

it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [29, 30].

Results. Different from Refs. [25, 26], where the NC-
SMC was introduced and applied to the description of the
unbound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [31, 32]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [33] and N2LO 3N force of
Ref. [34], constrained to provide an accurate description
of the A = 2 and 3 [35] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [36–
39] to minimize the influence of momenta higher than
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FIG. 1. (Color online) Calculated p-4He phase shifts at
Nmax = 13 and ~Ω = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. All values are
in the laboratory frame.

Λ = 2.02 fm−1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the p-4He sector only of the model space
considered here [corresponding to the second term in the
right-hand side of Eq. (2)], i.e. by solving Hχ = Eχ [24].
There, a careful analysis of the computed scattering
phase shifts showed that independence with respect to
the parameters characterizing the HO basis is approached
at Nmax = 13 (currently our computational limit) and
~Ω = 20 MeV, and that small variations of the SRG mo-
mentum scale around the value chosen here do not lead
to significant differences in the results. By far the largest
variation in the obtained phase shifts was observed as
a function of the number of states used to describe the
helium nucleus, particularly in the 2P3/2 and 2P1/2 par-
tial waves, where even the inclusion of up to the first
seven (Jπα

α Tα = 0+10, 0+20, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insufficient for the accurate
description of the resonances below Ep ∼ 5 MeV proton
incident energy (see Fig. 10 of Ref. [24]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [24]
by coupling the first fourteen (of which three 3/2- and
two 1/2-) states of the 5Li compound nucleus. As illus-
trated in Fig. 1, and previously demonstrated with a two-
body Hamiltonian for neutron-6He scattering [25, 26],
this substantially mitigates the dependence on the num-
ber of eigenstates of the target so that even a model space
including only the ground state (g.s.) of 4He is already
sufficient to provide a reasonable description of the sig-
nificant elastic scattering phase shifts. Still, to reach the
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FIG. 2. (Color online) Comparison of the p-4He elastic scat-
tering, between the calculated (solid red lines) and a set of ex-
perimental (markers) differential cross-sections from Refs. [3–
6, 10] at forward scattering angle θp = 25◦ (a) and backscat-
tering angle θp = 141◦ (b). The calculation corresponds to
the most complete results of Fig. 1.

high accuracy we seek in the present work higher helium
excitations cannot be neglected. This is because in spite
of the correlations added by the 5Li compound states, the
Jπα
α Tα = 0-0, 2-0, 2-1 and 1-1 (respectively the third,

fourth, fifth and sixth) states do play a role, particularly
in determining the 3/2- and 1/2- resonance energies and
widths.

In Fig. 2 our most complete results (including the first
seven low-lying states of 4He) for the 4He(p, p)4He an-
gular differential cross section at the laboratory proton-
scattering angles of θp = 25◦ and 141◦ are compared to
measurements in the range of incident energies up to 12
MeV [3–6, 10] . The agreement with data is excellent
both at forward and backward angles. The high energy
tail of the cross section was already well described within
the more limited model space of Ref. [24]. The effect of
the additional 5Li states, included in the present calcu-
lation, is essentially confined around their eigenenergies.
The first 3/2- and 1/2- states play the largest role, sub-
stantially improving the agreement with experiment at
lower energies. Indeed, we see in Fig. 2 that the cal-
culated differential cross section lies within the experi-
mental error bars in the peak region dominated by the
resonances, though the width of the peak is somewhat
overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-
ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger differences

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
δ′(Ekin) of the phase shift is maximal [20], and widths Γ =
2/δ′(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [40]. Units are in MeV.

R-matrix Present results

Jπ ER Γ ER Γ

3/2− 1.67 1.37 1.77(1) 1.70(5)

1/2− 3.35 9.40 3.11(2) 7.90(50)

for the widths, particularly for the 5Li g.s., which is 24%
broader than in the R-matrix analysis. The computed
widths, particularly that of the 1/2- resonance, present
the largest uncertainty in terms of number of 4He states
included in the calculation (indicated in parenthesis).
This could explain the remaining discrepancies seen in
Fig. 2 at energies immediately above the peak.

In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169◦, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV≤ Ep ≤ 3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
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FIG. 3. (Color online) Differential cross section of the p-4He
backscattering at angle θp = 169◦ for a range of the incident
proton energy close to the 5Li g.s. resonance. The best three
calculations of Fig. 1 are shown as an indication of the the-
oretical uncertainties for comparison with experimental data
of Refs. [5, 8, 10, 41].



4

0 5 10 15 20 25
E

α
 [MeV]

0.5

1.0

1.5

2.0

d
σ

/d
Ω

p
 [

b
/s

r]
Nurmela et al., 4

o

Nurmela et al., 15
o

Kim et al., 20
o

Nagata et al., 20
o

Pusa et al., 20
o

Wang et al., 20
o

Keay et al., 30
o

ϕ
p
 = 4

o

1
H(α,p)

4
He

ϕ
p
 = 15

o

ϕ
p
 = 20

o

ϕ
p
 = 30

o

(a)

3 6 9 12
E

α
 [MeV]

0.2

0.4

0.6

0.8

d
σ

/d
Ω

p
 [

b
/s

r]

Baglin et al.

Bogdanovic et al.

Browning et al.

Keay et al.

Kim et al.
Wang et al.

ϕ
p
 = 30

o
1
H(α,p)

4
He

7
6

5

4
He states

(b)

FIG. 4. (Color online) Comparison of the differential cross section as a function of the incident 4He-nucleus energy near the
5Li g.s. resonance. On the left panel (a), results of our most complete calculation (solid lines) are compared to data for a set
of proton recoil angles ϕp = 4◦, ϕp = 16◦, ϕp = 20◦ and ϕp = 30◦ from Refs [9–15, 42, 43]. The right panel (b) focuses on the
proton recoil angle ϕp = 30◦, more data are shown and theoretical uncertainties are quantified as in Fig. 3.

The three curves are all within 5% one from another and
differences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which affects the spin-orbit
splitting between 2P3/2 and 2P1/2 phase shifts) is a cur-
rent topic of interest in nuclear physics [citation?].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4a, the computed 1H(α, p)4He angular differen-
tial cross section at the proton recoil angles ϕp = 4◦,
15◦, 20◦ and 30◦ is compared to various data sets over a
wide range of helium incident energies, Eα. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above Eα ∼ 13 MeV, but once
again deteriorates at intermediate energies due to the
overestimated width of the 3/2- resonance. In Fig. 4b,
we concentrate on the well-studied proton recoil angle of
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FIG. 5. (Color online) Relative difference (in percent) be-
tween the calculated elastic recoil cross section at Nmax = 13
and 11 as a function of the proton angle ϕp for the helium
incident energies Eα = 3.2, 6.0 and 9.5 MeV. Only the first
two 5Li states are accounted for in this study.

∼ 30◦. In the dip near Eα = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
differ up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number of
helium states included in the calculation at this energy,
and a study of the uncertainty associated with the size of
the HO basis Nmax, shown in Fig. 5, indicates that they
are accurate to less than 10%. However, different from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most complete ab ini-
tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insufficient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
nuclear interactions and exascale computing capabilities,
the direct solution of the Schrödinger equation is poised
to become a competitive approach to provide guidance
for applications using light-nucleus cross sections.
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